# WNE Linear Algebra Final Exam <br> Series A 

12 March 2013

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.


## Problem 1.

Let $v_{1}=(1,1,0,1), v_{2}=(1,-1,1,2), v_{3}=(4,2,1,5), v_{4}=(0,-2,1,1)$. Set $V=$ $\operatorname{lin}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.
a) find a basis of the space $V$ and a system of linear equations which set of solutions is equal to $V$,
b) let $W_{t}=\operatorname{lin}((5,-1, t, 8))$. For which $t \in \mathbb{R}$ the space $V$ contains $W_{t}$, i.e. $W_{t} \subset V$ ?

## Problem 2.

Let $W \subset \mathbb{R}^{5}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{rllllllll}
x_{1} & + & 2 x_{2} & - & x_{3} & - & x_{4} & - & x_{5}
\end{array}=0\right.
$$

a) find dimension of the space $W$,
b) find a basis $\mathcal{A}$ of $W$ such that the vector $(1,1,0,2,1)$ has all coordinates equal to 1 relative to $\mathcal{A}$.

## Problem 3.

Let $\mathcal{A}$ be basis of $\mathbb{R}^{3}$ and let $\mathcal{C}=\{(1,2),(-1,3)\}$ be a basis of $\mathbb{R}^{2}$. Let $\mathcal{B}$ be a basis of $\mathbb{R}^{2}$ such that $M(i d)_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$. A linear transformation $\varphi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is given by the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$
a) find matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{C}}$,
b) find basis $\mathcal{B}$.

## Problem 4.

Let $v_{1}=\frac{1}{3}(2,-2,0,1), v_{2}=\frac{1}{3}(2,2,1,0)$ and let $w=(0,0,3,6)$.
a) find the orthogonal projection of $w$ onto $\operatorname{lin}\left(v_{1}, v_{2}\right)$,
b) find $v_{3} \in \mathbb{R}^{3}$ such that $v_{1}, v_{2}, v_{3}$ is an orthogonal basis of $W=\operatorname{lin}\left(v_{1}, v_{2}, w\right)$.

## Problem 5.

Let $A=\left[\begin{array}{rrrr}1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 2 & -2 & 2 & 6 \\ 3 & 0 & 1 & 4\end{array}\right]$.
a) compute $\operatorname{det} A$,
b) let $B=\left[\begin{array}{ll}4 & 2 \\ 2 & 5\end{array}\right]$ and let $C \in M(2 \times 2 ; \mathbb{R})$ be a matrix such that $\operatorname{det}\left(B C^{\boldsymbol{\top}}\right)=32$. Compute $\operatorname{det}\left(C^{3}\right)$.

## Problem 6.

Let $A=\left[\begin{array}{rr}3 & -1 \\ 2 & 0\end{array}\right]$.
a) find $C \in M(2 \times 2 ; \mathbb{R})$ and $s \in \mathbb{R}$ such that $C^{-1} A C=\left[\begin{array}{ll}2 & 0 \\ 0 & s\end{array}\right]$,
b) compute $A^{200}$.

## Problem 7.

Let $P=(1,2,3), Q=(2,1,4)$ be points in the affine space $\mathbb{R}^{3}$.
a) find a parametrization of the line $L$ passing through $P$ and $Q$ and a system of linear equations describing $L$,
b) find an equation describing plane $H \subset \mathbb{R}^{3}$ for which $Q$ is the orthogonal projection of $P$ on $H$.

## Problem 8.

Consider the following linear programming problem $x_{1}-2 x_{2}+x_{3} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{rl}
2 x_{1}+x_{2}+x_{3}+2 x_{4} & =2 \\
2 x_{1}+x_{2} & +3 x_{4}+x_{5}
\end{array}=4 \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the basic solutions $\mathcal{B}_{1}=\{2,3\}, \mathcal{B}_{2}=\{3,5\}$ are feasible?
b) solve the above linear programming problem using simplex method.

