WNE Linear Algebra Final Exam

Series A

12 March 2013

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.

Let $v_1 = (1, 1, 0, 1), v_2 = (1, -1, 1, 2), v_3 = (4, 2, 1, 5), v_4 = (0, -2, 1, 1).$ Set $V = lin(v_1, v_2, v_3, v_4).$

- a) find a basis of the space V and a system of linear equations which set of solutions is equal to V,
- b) let $W_t = \lim((5, -1, t, 8))$. For which $t \in \mathbb{R}$ the space V contains W_t , i.e. $W_t \subset V$?

Problem 2.

Let $W \subset \mathbb{R}^5$ be a subspace given by the homogeneous system of linear equations

 $\begin{cases} x_1 &+ 2x_2 &- x_3 &- x_4 &- x_5 &= 0\\ 2x_1 &+ 4x_2 &+ x_3 &- 6x_5 &= 0\\ 3x_1 &+ 6x_2 &- 2x_3 &- x_4 &- 7x_5 &= 0 \end{cases}$

- a) find dimension of the space W,
- b) find a basis \mathcal{A} of W such that the vector (1, 1, 0, 2, 1) has all coordinates equal to 1 relative to \mathcal{A} .

Problem 3.

Let \mathcal{A} be basis of \mathbb{R}^3 and let $\mathcal{C} = \{(1,2), (-1,3)\}$ be a basis of \mathbb{R}^2 . Let \mathcal{B} be a basis of \mathbb{R}^2 such that $M(id)_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$. A linear transformation $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given by the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$

a) find matrix $M(\varphi)^{\mathcal{C}}_{\mathcal{A}}$,

b) find basis \mathcal{B} .

Problem 4.

Let $v_1 = \frac{1}{3}(2, -2, 0, 1), v_2 = \frac{1}{3}(2, 2, 1, 0)$ and let w = (0, 0, 3, 6).

- a) find the orthogonal projection of w onto $lin(v_1, v_2)$,
- b) find $v_3 \in \mathbb{R}^3$ such that v_1, v_2, v_3 is an orthogonal basis of $W = \lim(v_1, v_2, w)$.

Problem 5. Let $A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 2 & -2 & 2 & 6 \\ 3 & 0 & 1 & 4 \end{bmatrix}$. a) compute det A, b) let $B = \begin{bmatrix} 4 & 2 \\ 2 & 5 \\ 2 & 5 \end{bmatrix}$ and let $C \in M(2 \times 2; \mathbb{R})$ be a matrix such that det $(BC^{\intercal}) = 32$. Compute det (C^3) .

Problem 6. Let $A = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$.

a) find $C \in M(2 \times 2; \mathbb{R})$ and $s \in \mathbb{R}$ such that $C^{-1}AC = \begin{bmatrix} 2 & 0 \\ 0 & s \end{bmatrix}$, b) compute A^{200} .

Problem 7.

Let P = (1, 2, 3), Q = (2, 1, 4) be points in the affine space \mathbb{R}^3 .

- a) find a parametrization of the line L passing through P and Q and a system of linear equations describing L,
- b) find an equation describing plane $H \subset \mathbb{R}^3$ for which Q is the orthogonal projection of P on H.

Problem 8.

Consider the following linear programming problem $x_1 - 2x_2 + x_3 \to \min$ in the standard form with constraints

$$\begin{cases} 2x_1 + x_2 + x_3 + 2x_4 &= 2\\ 2x_1 + x_2 &+ 3x_4 + x_5 &= 4 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 5$$

- a) which of the basic solutions $\mathcal{B}_1 = \{2, 3\}, \mathcal{B}_2 = \{3, 5\}$ are feasible?
- b) solve the above linear programming problem using simplex method.